Let n_1 and n_2 be the number of red and black balls respectively, in box I. Let n_3 and n_4 be the number of red and black balls, respectively, in box II. [/esquestion]

Q. One of the two boxes, box I and box II, was selected at random and a ball was drawn randomly out of this box. The ball was found to be red. If the probability that this red ball was drawn from box II is $\frac{1}{3}$, then the correct option(s) with the possible values of n_1 , n_2 , n_3 and n_4 is (are) (A)

$$\begin{array}{c} n_{1}=3,n_{2}=3,n_{3}=5,n_{4}=15 \text{ (B) } n_{1}=3,n_{2}=6,n_{3}=10,n_{4}=50 \text{ (C) } n_{1}=8,n_{2}=6,n_{3}=5,n_{4}=20 \text{ (D)} \\ n_{1}=6,n_{2}=12,n_{3}=5,n_{4}=20 \end{array} \tag{IJEE 2015, 4M, -0M}$$

Solution (a) Required probability =
$$\frac{N_3}{N_1+N_2} = \frac{1}{N_3+N_1}$$
 (now Check of tion)

Q. All ball is drawn at random from box I and transferred to box II. If the probability of drawing a red ball from box I, after this transfer, is $\frac{1}{3}$, then the correct option(s) with the possible values of n_1 and n_2 is (are) (A) $n_1=4$ and $n_2=6$ (B) $n_1=2$ and $n_2=3$ (C) $n_1=10$ and $n_2=20$ (D) $n_1=3$ and $n_2=6$

Solution (b) Required probability =
$$\frac{n_1}{n_1+n_2} \cdot \frac{n_1-1}{n_1+n_2-1} + \frac{n_2}{n_1+n_2} \cdot \frac{n_1}{n_1+n_2-1} = \frac{1}{3}$$

(now check given obtain)

Q. A computer producing factory has only two plants T_1 and T_2 Plant T_1 produces 20% and plant T_2 produces 80% of the total computers Jproduced. 7% of computers produced in the factory turn out to be defective. It is known what

P (computer turns out to be defective given that is produced in plant T_1) =

10P (computer turns out to be defective given that it is produced in plant T_2) where P(E) denotes the probability of an event E. A computer produces in the factory is randomly eselected and it does not turn out to be defective. Then the probability that it is produced plant T_2 is A $\frac{36}{73}$ B $\frac{47}{70}$ C $\frac{78}{93}$ D $\frac{75}{83}$

Solution:
$$P(\tau_1) = \frac{20}{100} \quad P(\tau_2) = \frac{80}{100}$$

$$|extrice P(\frac{D}{T_2}) = \chi \quad P(\frac{D}{T_1}) = 10\chi$$

$$|extrice P(D) = \frac{3}{100} (8ven)$$

$$|extrice P(T_1) = \frac{3}{100} (8ven)$$

$$|extrice P(T_1) = \frac{3}{100} (8ven)$$

$$|extrice P(T_2) = \frac{1}{100} (8ven)$$

$$|extrice P(T_2) = \frac{1}{100} (8ven)$$

$$|extrice P(T_2) = \frac{3}{100} \times \frac{30}{40} + \frac{80}{100} \times \frac{39}{40}$$

$$|extrice P(T_2) = \frac{3}{100} \times \frac{39}{40} + \frac{80}{100} \times \frac{39}{40}$$

$$|extrice P(T_2) = \frac{3}{100} \times \frac{39}{40} + \frac{80}{100} \times \frac{39}{40}$$

$$|extrice P(T_2) = \frac{3}{100} \times \frac{39}{40} + \frac{80}{100} \times \frac{39}{40}$$

$$|extrice P(T_2) = \frac{3}{100} \times \frac{39}{40} + \frac{80}{100} \times \frac{39}{40}$$

$$|extrice P(T_1) = \frac{3}{100} \times \frac{39}{40} + \frac{80}{100} \times \frac{39}{40}$$

$$|extrice P(T_1) = \frac{3}{100} \times \frac{39}{40} + \frac{80}{100} \times \frac{39}{40}$$

$$|extrice P(T_1) = \frac{3}{100} \times \frac{39}{40} \times \frac{39}{40} \times \frac{39}{40}$$

$$|extrice P(T_1) = \frac{3}{100} \times \frac{39}{40} \times \frac{39}{40} \times \frac{39}{40}$$

$$|extrice P(T_1) = \frac{3}{100} \times \frac{39}{40} \times$$

Football teams T_1 and T_2 have to play two games against each other. It is assumed that the outcomes of the two games are independent. The probabilities of T_1 winning, drawing and losing a game against T_2 are $\frac{1}{2}$, $\frac{1}{6}$ and $\frac{1}{3}$, respectively. Each team gets 3 points for a win, 1 point for a draw and 0 point for a loss in a game. Let X and Y denote the total points scored by teams T_1 and T_2 , respectively, after two games

Q.
$$P(X > Y)$$
 is- $A(A) = \frac{1}{4} B(B) = \frac{5}{12} C(B) = \frac{1}{2} D(B) = \frac{7}{12}$

[JEE(Advanced)-2016

Solution:
$$p(X>Y) = p(T_1 \text{ win}) p(T_1 \text{ win}) p(T_2 \text{ win}) p(T_3 \text{ win}) p(T_4 \text{ win}) p(T_4 \text{ win}) p(T_5 \text{ win}) + p(T_6 \text{ win}) p(T_6 \text{ win}$$

Q. P(X = Y) is- (A)
$$\frac{11}{36}$$
 (B) $\frac{1}{3}$ (C) $\frac{13}{36}$ (D) $\frac{1}{2}$

Solution:
$$-p(x=y) = p(masen draw)p(masen draw) + p(\tau, win)p(\tau, win) + p(\tau, win)p(\tau, win)$$

$$= \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{36} + \frac{2}{6} = \frac{13}{36}$$

Q. Let X and Y be two events such that $P(X) = \frac{1}{3}$, $P(X|Y) = \frac{1}{2}$ and $P(Y|X) = \frac{2}{5}$. Then

(A)
$$P(X'|Y) = \frac{1}{2}$$

(B)
$$P(X \cap Y) = \frac{1}{5}$$

[JEE(Advanced)-2017]

(C)
$$P(X \cup Y) = \frac{2}{5}$$

(D)
$$P(Y) = \frac{4}{15}$$

$$b(x) = \frac{b(\lambda)}{b(\lambda)} = \frac{b(\lambda)}{b(\lambda) - b(\lambda)\lambda} = 1 - \frac{b(\lambda)}{b(\lambda)\lambda} = 1 - \frac{\lambda^{1/2}}{3^{1/2}} = \frac{5}{3}$$

$$b(\lambda) = \frac{b(\lambda)}{b(\lambda)} = \frac{12}{b(\lambda)} - b(\lambda)\lambda = \frac{3}{4} + \frac{12}{4} - \frac{12}{3} = \frac{3}{3} + \frac{12}{3} = \frac{1}{3} + \frac{12}{3} = \frac{1}{3}$$

$$b(\lambda) = \frac{12}{b(\lambda)} - b(\lambda)\lambda = \frac{12}{4}$$

$$b(\lambda) = \frac{12}{b(\lambda)\lambda} = \frac{12}{3} + \frac{12}{3} = \frac{12}{3} + \frac{12}{3} = \frac{12}{3}$$

$$b(\lambda) = \frac{12}{3} + \frac{12}{3} = \frac{12}{3}$$

$$b(\lambda) = \frac{12}{3} + \frac{12}{3} = \frac{12}{3} + \frac{12}{3} = \frac{12}{3}$$

$$b(\lambda) = \frac{12}{3} + \frac{12}{3} = \frac{12}{3} + \frac{12}{3} = \frac{12}{3}$$

$$b(\lambda) = \frac{12}{3} + \frac{12}{3} = \frac{12}{3} + \frac{12}{3} = \frac{12}{3} + \frac{12}{3} = \frac{12}{3}$$

$$b(\lambda) = \frac{12}{3} + \frac{12}{3} = \frac{12}{3}$$